Deep Learning for Fatigue Estimation on the Basis of Multimodal Human-Machine Interactions
نویسندگان
چکیده
The new method is proposed to monitor the level of current physical load and accumulated fatigue by several objective and subjective characteristics. It was applied to the dataset targeted to estimate the physical load and fatigue by several statistical and machine learning methods. The data from peripheral sensors (accelerometer, GPS, gyroscope, magnetometer) and brain-computing interface (electroencephalography) were collected, integrated, and analyzed by several statistical and machine learning methods (moment analysis, cluster analysis, principal component analysis, etc.). The hypothesis 1 was presented and proved that physical activity can be classified not only by objective parameters, but by subjective parameters also. The hypothesis 2 (experienced physical load and subsequent restoration as fatigue level can be estimated quantitatively and distinctive patterns can be recognized) was presented and some ways to prove it were demonstrated. Several “physical load” and “fatigue” metrics were proposed. The results presented allow to extend application of the machine learning methods for characterization of complex human activity patterns (for example, to estimate their actual physical load and fatigue, and give cautions and advice).
منابع مشابه
Investigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملMaintenance and Work-rest Scheduling in Human-machine System According to Fatigue and Reliability
Most manufacturers use human-machine systems to produce high-quality products. Dealing with human-machine systems is very complicated since not only machines should be utilized in proper condition but also appropriate environment should be provided for human resources. Most manufacturers have a maintenance plan for machines but many of them do not have a proper work-rest schedule for human reso...
متن کاملMaintenance and work-rest scheduling in Human-machine system according to fatigue and reliability
Most manufacturers use human-machine systems to produce high-quality products. Dealing with human-machine systems is very complicated since not only machines should be utilized in proper condition but also appropriate environment should be provided for human resources. Most manufacturers have a maintenance plan for machines but many of them do not have a proper work-rest schedule for human reso...
متن کاملUser-driven Intelligent Interface on the Basis of Multimodal Augmented Reality and Brain-Computer Interaction for People with Functional Disabilities
The analysis of the current integration attempts of some modes and use cases of user-machine interaction is presented. The new concept of the user-driven intelligent interface is proposed on the basis of multimodal augmented reality and brain-computer interaction for various applications: in disabilities studies, education, home care, health care, etc. The several use cases of multimodal augmen...
متن کاملMachine Learning Algorithm for Prediction of Heavy Metal Contamination in the Groundwater in the Arak Urban Area
This paper attempts to predict heavy metals (Pb, Zn and Cu) in the groundwater from Arak city, using support vector regression model(SVR) by taking major elements (HCO3, SO4) in the groundwater from Arak city. 150 data samples and several models were trained and tested using collected data to determine the optimum model in which each model involved two inputs and three outputs. This SVR model f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.06048 شماره
صفحات -
تاریخ انتشار 2017